
American Translators Association 33www.ata-chronicle.online

OPUS-CAT: A State-of-the-Art
Neural Machine Translation
Engine on Your Local Computer
Neural machine translation (NMT) is one of the success stories of deep
learning and artificial intelligence. Revolutionary innovations in the
computational architectures made in 2015–2017 have led to dramatic
improvements in the quality of machine translation (MT) and changed
the field forever. Some professional translators welcome these changes
with enthusiasm, others less so. But everyone has to deal with them.
Historically, the relationship between human translation and MT has
been uneasy and complicated, but an increasing number of players in
both fields are now coming to view it as synergistic.1

T o leverage this synergy,
MT developers,
disappointed with the

quality of crowdsourced
evaluation of MT output,
are heeding advice from
professional translators.
The latter, in turn, are using
MT suggestions alongside
translation memory (TM)
matches to facilitate work
on their projects, especially
since many computer-assisted
translation (CAT) tools now
have plugins for popular
generic MT engines. And one
should never forget that the
multilingual data used to train
MT systems has, at the end of
the day, a very human origin.

Most general-purpose
MT systems are trained on
everything they can find,
scrape, clean, and align
from the huge amount of
multilingual data available.
But most of professional
human translation is
specialized, which is what
gives it a real value. Yet the
desire to automate everything
is unstoppable. Tech giants,
custom MT providers, and

larger language services
providers are actively working,
even as you read this, on
domain adaptation—the
fine-tuning of MT systems
to particular areas such as
software localization, clinical
trials, or pharmaceuticals.
Domain adaptation is a hot
topic in academic MT research
and figures prominently
at the annual machine
translation competitions.

To make use of the MT
adaptation offered by
commercial companies,
translators are encouraged
to upload their TMs and
term bases to a cloud-
based engine in the hope
that the system will learn,
for example, to translate
“conductor” as “electric
conductor” and not “music
conductor.” Normally this
requires a paid subscription,
with confidentiality of the
uploaded resources promised
in return. There’s no reason
to distrust such assurances.2
Yet some translators may
hesitate to press the Upload
button and commit their

golden super-confidential
resources, resulting from
years of painstaking work and
generating steady revenue,
to the cloud. And some may
want to know more about
what happens, technically
speaking, to the uploaded
data on the other side of the
internet connection.

One could handle all such
issues by installing, training,
and using a customizable NMT
system, such as OpenNMT or
Marian NMT (see the links in
the sidebar on page 37), on a
local machine. But one should
be prepared to use command
line programming and
deal with very intimidating
installation and debugging
pipelines. Even if the process
is successful, before the
system is fine-tuned for a
specific domain (e.g., oil and
gas, aerospace engineering)
it needs to be trained from
scratch on 10+ million
parallel sentences from
generic bilingual corpora,
such as OPUS. Doing it on a
central processing unit (CPU)
machine would take several

months (and you would need
to put it in a freezer). Using
a graphics processing unit
might be a better option. But
to harness its full power, you
need to know what to do with
it—another pain. It’s safe
to say that 99% of us don’t
have the requisite skills to do
any of that.

What if someone else did
all of that for us? And we
could simply enjoy having a
pre-trained state-of-the-art
NMT system on our PC, totally
free, in a familiar Windows
environment giving us an
opportunity to fine-tune it
with our local and exclusive
resources? And even better—
integrate it into our CAT tools?
Sounds too good to be true?
Enter OPUS-CAT.

What’s OPUS-CAT?
OPUS is one of the largest
collections of publicly
available bilingual corpora
in many language pairs
widely used for training
MT systems. OPUS-MT, an
ongoing project led by Jörg
Tiedemann, a professor of
language technology at the
University of Helsinki, and
funded by several European
Union and local agencies, is
a growing repository of over
a thousand pre-trained NMT
models intended to be used
with Marian NMT, an efficient
and robust framework written
in C++, which can run on
Windows computers. OPUS-
CAT is a collection of MT tools
built around Marian NMT
and developed by Tommi
Nieminen3, an experienced
professional translator and
MT researcher. It’s largely due
to his unique combination of
skills that we have OPUS-CAT
at our fingertips.

RESOURCE REVIEW by Yuri Balashov

34 The ATA Chronicle | September/October 2021 www.atanet.org

OPUS-CAT Architecture
OPUS-CAT must be installed
first as a standalone Windows
application. (Please follow
the detailed instructions on
the OPUS-CAT GitHub site
referenced in the sidebar on
page 37.) It can then be used
as such, or in combination
with a CAT tool via a plugin
that needs to be installed
and configured separately.
(See Figure 1.) Integration
with CAT tools is an explicit

goal of OPUS-CAT that’s
even reflected in its name,
and probably the best way
to use it in actual translation
projects with optimal
speed. Because of Trados
Studio’s more advanced
plugin support, its users
may currently enjoy the
most benefits from such
an integration. But plugins
are also available for other
CAT tools such as memoQ
and OmegaT, along with
more limited application

programming interface
support for Wordfast. The
features and documentation
of these plugins are in
development, as are
additional plugins.

The following will focus
on the backbone of OPUS-
CAT—a locally installed
MT engine that enables the
deployment and fine-tuning
of NMT models in the form of
Windows executables built on
the Marian-NMT framework.

Figure 1: OPUS-CAT architecture: From: Nieminen 2021 OPUS-CAT MT Engine
The engine has a minimalistic
graphical user interface (GUI)
and comes in a zipped folder
whose contents can be placed
anywhere on your computer.
Figure 2 shows the GUI for the
most recent version of OPUS-
CAT available at the time I’m
writing this article. The GUI
may look slightly different in
later versions.

To start the engine, double
click on OpusCatMTEngine.exe
or run it from the command
line. The next step is to
download a pre-trained NMT
model from the OPUS-MT
repository by clicking on
Install OPUS model from Web.
Select the most recent model
in your language pair (e.g.,
French-English) and click
Install model locally to place
it in your local AppData
directory (e.g., C:\Users\
Yuri Balashov\AppData\
Local\opuscat). These two
directories, whose contents
are displayed in Figure 3 on
page 35, are the only ones
associated with OPUS-CAT
on your computer, with the
models and other data written
to the second directory. No
registry changes, and no
external dependencies. Both
directories can be safely
deleted if the application is no
longer needed. (I checked it.)

After installation, the
model(s) will be displayed in
the Models tab of the GUI (See
Figure 2). You’re now ready to
click Translate with model.
Now hold your breath: a state-
of-the-art NMT system is
running on your computer!

How Good Is the
Base Model?
I ran some random tests with
the base English-Russian

Figure 2: OPUS-CAT graphical user interface

American Translators Association 35www.ata-chronicle.online

Fine-Tuning and Domain
Adaptation in OPUS-CAT
Domain adaptation involves
additional training of the
base model with a relatively
small amount of your golden
data (e.g., 10–100K parallel
sentences) in the form of
translation memory eXchange
(TMX) or parallel text files.
To do this, click the Fine-tune
selected model button (see
Figure 2) and upload your
TMX (Locally! You can shut
down your internet if you’re
still worried) and choose a
suitable model label. (See
Figure 4 on page 36.)

Press Fine-tune and reopen
the Models tab to track
progress (see Figure 2). Fine-
tuning may take several hours
depending on the amount
of data, but the engine will
use only one CPU thread and
2048 MB of workspace by
default, so you can safely
do other things in parallel.
Behind the scenes, OPUS-CAT
will strip your TMX of all the
tags and inline formatting,
split it into a “training set”
and a “validation set,” and
extract parallel Unicode text
from both. The former is used
to batch-train the model
with conservative default
hyperparameter settings
(such as the “learning rate”)
to ensure a reasonable time
frame, avoid overfitting
(modeling the data too closely
without learning the ability to
generalize to new examples),
and make your life easier.
The validation set is used to
check the model performance
with BiLingual Evaluation
Understudy (BLEU)5 scores
after every 100 weight
updates. (See the blue line
in Figure 5 on page 36.) In
addition, the performance will

Figure 3: The contents of the two OPUS-CAT
directories for version 1.1.0.3. They may look
slightly different in later versions.

(a) C:\Users\Yuri Balashov\
OpusCatMtEngine_v1.1.0.3\

(b) C:\Users\Yuri Balashov\
AppData\Local\opuscat\

model pre-trained on 50+
million parallel sentences
from the OPUS corpora. I can
report anecdotally (but in line
with what Jost Zetzsche says
in a recent post4) that the
OPUS-CAT performance was
roughly comparable to that
of Google Translate or DeepL.
For example, all three did
equally well on sentences with
center embedding, such as
“The book the girl gave to the
boy was interesting” (making
the correct gender choices
required in Russian) and
“Yuri is easy to please” versus
“Yuri is eager to please,”
which require different noun
forms in Russian. And all
three stumbled on really
challenging (even for us!)
“garden path” sentences,
such as “The horse raced past
the barn fell,” generating
fluent but inadequate output.
DeepL did very well on the
nested possessives in “My
sister’s favorite movie actor’s
largest car was green” (Самая
большая машина любимого
киноактера моей сестры
была зеленого цвета), while
OPUS-CAT missed “favorite”
and “movie” (Самая большая
машина актера моей сестры
была зеленая), and Google
inserted a disfluency in
an otherwise acceptable
translation (Самая большая
машина у любимого
киноактера моей сестры
была зеленой). Not much
should be read into such ad
hoc evaluation. The online
MT systems are constantly
improving their output, but
one can always set new traps
for any engine to fall into.
A more interesting question
is the usefulness of MT
systems for postediting and
domain adaptation.

be scored against an “out-
of-domain” validation set
supplied with the base model
(see the red line in Figure 5).

To access this chart, click
Show fine-tuning progress
when the fine-tuning is
complete. If you’re lucky
(and your TM is good!) you
should see your in-domain
score improved by 10 or
more BLEU points without
overfitting and without
degrading the out-of-
domain performance by more
than a few BLEU points.
Otherwise, your model may
start “hallucinating” the
overlearned specialized
content in translating generic
sentences. (“Hallucination”
is a term used in MT research
to denote MT-generated
content that has no
counterparts in the source.)

Please be aware that each
fine-tuning of the original
model will create a separate
subdirectory (about 1GB) in
your local AppData directory
or similar directory for your

language pair. But any model
can be easily removed by
clicking Delete selected model
from the GUI or directly. (Do
not delete the base model!)

Customization and
Evaluation (For More
Advanced Users)
The quality of domain
adaptation in any MT
system is an open empirical
question, and OPUS-CAT is
no exception. You’re in the
best position to evaluate
the output of a fine-tuned
model, compare it with other
customizable or generic MT
systems, and decide whether
it can be used in your work.
You may be disappointed with
the initial results, but don’t
give up. Experiment with
different TMs, large and small.
Try to increase the number
of training “epochs” (i.e.,
complete runs through your
fine-tuning data) by changing
the after-epochs parameter
from 1 to, say, 3 in the

RR

36 The ATA Chronicle | September/October 2021 www.atanet.org

customize.yml file (see Figure
3b), which can be opened with
Notepad++ or by clicking Open
fine-tune setting in text editor in
the Settings tab of the GUI (see
Figure 2).

Consider using more
demanding validation sets
(e.g., your own domain-
specific parallel Unicode text
files with 100–300 sentence
pairs) instead of letting the
system split your TMX. And if

you know what you’re doing:
try repeated training (with
the same or different TMs) by
replacing the model file in the
base model directory with a
similarly named file from the
fine-tuned model directory
and deleting the latter. As
a last resort, try increasing
the learning rate (roughly,
the proportion by which the
parameters of your model are
adjusted after each training

batch) from, for example,
learn-rate:0.00002 to, say,
learn-rate:0.00005 in the
customize.yml file. But beware
of overfitting: the system
may effectively “memorize”
your training data and
become unable to generalize
beyond them. This is a bit
like manually oversteering a
self-driving car into a wreck.
If you have a good in-domain
glossary, try to repeat the

Figure 4: Fine-tuning settings in OPUS-CAT training with it and see what
happens. (I haven’t done it
yet.) Finally, don’t use any
of your training sentences
in validation or testing. That
would run afoul of the first
principle of machine learning!
(“Never use your training data
in testing!”) I suggest using
your CAT tool to filter out any
TM matches > 75% from both.

So far, my decidedly
unscientific experimentation
with all of that has produced
mixed results. For example,
using in-domain resources
enabled the system to
correct its initial translation
of “fibrotic infiltration”
from фибротическая
инфильтрация to
фибриозная инфильтрация.
But the fine-tuned model
sometimes misses or
mistranslates entire fragments
in the test sentences, such
as “positive end expiratory
pressure,” while generating
very fluent output. Post-
editing it would definitely
require extra care. Repeated
training or increasing the
number of epochs improves
the translation of some
parts of a test sentence but
deteriorates others. Fine-
tuning with a mammoth TM
(general health care, about
350K units) and a more
narrowly specialized custom
validation set took over six
hours, degraded both in- and
out-of-domain performance,
but did surprisingly well on
that famous “garden path”
sentence, translating “The
horse raced past the barn
fell” as Лошадь, которая
бежала мимо сарая, упала
(“The horse, which ran past
the barn, fell”), and beating
Google Translate, DeepL, and
all my previous OPUS-CAT
models. Neural networks are

Figure 5: Tracking fine-tuning progress with BLEU scores. From: Nieminen 2021

RR

American Translators Association 37www.ata-chronicle.online

generally inscrutable, but they
can be awesome too.

Under the Hood
To those who are, like me,
interested in how natural
and artificial systems process
bilingual content, OPUS-CAT
offers a unique opportunity
to take a peek under the
hood without learning a lot
of coding. You can explore
the contents of some files in
your model subdirectories
with Notepad++. Some of

these are configuration files
while others are fine-tuning
logs. For example, the opus.
spm32k-spm32k.vocab.yml
configuration file is quite
special. It encodes a fixed
bilingual vocabulary of
about 60,000 entries used
in all your models. Most
entries are familiar words
in both languages. Others
are “subword pieces,” such
as “al” and “gi,” which
allow the model to learn
the translation of rare or

For More Information
OPUS
https://opus.nlpl.eu
A growing collection of open multilingual corpora.

OPUS-MT
https://opus.nlpl.eu/Opus-MT/
A repository of 1000+ NMT models trained on OPUS. The training
process is described here: https://github.com/Helsinki-NLP/Opus-MT.

OPUS-CAT MT Engine and CAT Plugins
https://helsinki-nlp.github.io/OPUS-CAT/
Documentation and installation instructions.

OPUS-CAT MT Engine and CAT Plugins
https://github.com/Helsinki-NLP/OPUS-CAT/issues
Lists known issues and debugging tips.

Marian NMT
https://marian-nmt.github.io

OpenNMT
https://opennmt.net

SacreBLEU
https://github.com/mjpost/sacrebleu
A robust implementation of BLEU scoring used in OPUS-CAT.

Subword NMT
https://github.com/rsennrich/subword-nmt
A subword segmentation algorithm based on byte-pair encoding and
used in some older OPUS-CAT models.

SentencePiece
https://github.com/google/sentencepiece
A tokenization-free subword segmentation algorithm based on byte-pair
encoding and unigram language model, used in most OPUS-CAT models.

new words (including those
unseen at training), such as
“polymyalgia,” by mapping
subword segments (e.g.,
“_poly my al gi a” to →поли
ми ал ги я) and, hopefully,
learning some morphology
as well (e.g., “_patient s”→
_пациент ы).

The notion of
“vocabulary” in NMT
is, well, curious. You
can visualize subword
segmentation by checking
the box next to your
language pair in the
Translate with model
window. And you can play
with the word alignment

feature (if available for
your model) to see which
target words and subword
segments correspond to
which source words and
their pieces, by hovering
over the source sentence.

Good luck experimenting
with OPUS-CAT! If you run
into problems, make sure to
check out the “debugging
and known issues” GitHub
site referenced in the
sidebar. If you don’t find
information on the problem
you’re experiencing,
consider posting a query on
the site to see if anyone can
offer a suggestion.6

NOTES
1 Balashov, Yuri. “The Translator’s Extended Mind.” In Minds and

Machines 30(2020), 349–83, https://rdcu.be/b7r9T; see also
Zetzsche, Jost. “(More) Advanced Human–Computer Interaction
for Translators,” The ATA Chronicle (January/February 2021),
30, https://bit.ly/Zetzsche-Chronicle.

2 For a recent discussion of this issue, see Zetzsche, Jost, “Data
Privacy and MT Engines,” The ATA Chronicle (July/August
2021), 31, https://bit.ly/data-privacy-MT.

3 Nieminen, Tommi. “OPUS-CAT: Desktop NMT with CAT
Integration and Local Fine-tuning.” In Proceedings of the 16th
Conference of the European Chapter of the Association for
Computational Linguistics: System Demonstrations (2021),
288–294, https://bit.ly/Nieminen.

4 Zetzsche, Jost. “Any Artistic Work, Especially One on a Large
Scale,” The Tool Box Journal, Issue 21-4-324 (April 2021),
https://bit.ly/Zetzsche-ToolBox.

5 BiLingual Evaluation Understudy (BLEU) score is an automatic
metric for evaluating the quality of MT by comparing its output
to reference translations produced by humans.

6 I thank Tommi Nieminen for numerous discussions
and comments.

Yuri Balashov, CT is a professor of philosophy and
a faculty fellow in the Institute for Artificial Intelligence
at the University of Georgia. He is also a certified ATA
member (English>Russian). He is currently working
on a new project exploring cognitive, linguistic, and

philosophical dimensions of human and machine translation
(www.yuribalashov.com). balashov.yuri@gmail.com

RR

